ON INTERPOLATION OF DIFFERENTIALLY STRUCTURED IMAGES
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ABSTRACT mation error. Also, the piecewise-polynomial model is gen-
A vector space approach to image reconstruction is deriveeralized by considering 2D Sobolev signals of finite support
and introduced. The continuous-domain image is assumesuch an assumption on the continuous-domain image has
to belong to a reproducing kernel Hilbert space and thédeen made in several image processing algorithms [7],
sampling process is shown to correspond to an appropri8] and it is adopted here as well. Within this setting,
ate orthogonal projection. The values at the interpolatinghe ideal sampling process is shown to correspond to a
grid are shown to correspond to a set of inner producset of inner product calculations; the same holds for the
calculations, giving rise to a minimax solution for @  interpolated values. This signal representation inteagicn
approximation problem. A tight upper bound on the ensuedo the sampling and to the interpolation processes gives ris
error is then derived and demonstrated. Examples of image an alternative interpolation approach. A detailed asialy
resizing show that the proposed method yields better esults given for the 1D case, followed by 2D scaling examples.
than presently available methods, including the cubic B-

spline method, in terms of SNR. Il. SAMPLING OF SMOOTH SIGNALS

|. INTRODUCTION We consider one-dimensional Sobolev spaces defined over a
Image interpolation is a fundamental task in image procesdinite open supporf2 = (—=, 7). A Sobolev space of order
ing applications. Such applications include rotationngra p is denoted byH?Z (2) and it consists of all finite energy
lation, resizing and derivative evaluation to name a fewfunctions for which their firstp derivatives are of finite
The underlying idea in current interpolation methods corenergy as well [9]. We adopt the following inner product
responds to regularity properties that are assumed on
the continuous-domain image. For example, a piecewise- P
polynomial model is often used, implying that the original XY gry = D <x(”),y(”)> . 2)
continuous-domain image is smooth, up to a certain degree. : =0 L2(9)
Several interpolation methods such as nearest-neighbor,
linear, Dodgson, Keys, Schaum, B-spline of higher ordersh Sobolev space is a reproducing kernel Hilbert space,
Meijering and 0-MOMS assume such a model [1]-[5].suggesting an orthogonal projection interpretation fa th
Furthermore, for a sufficiently smooth input signal, thesédeal sampling process.

very methods comply with the following upper bound on | epymg 1: The reproducing kernel off>(Q) (p = 1) is
the approximation error given by

=%, < €T x|

. as T —0. (1) K (s.1) = cosh(|.s—t|—ﬂ')
Here, x is the original continuous-domain sign&,is the 2sinh (m)
interpolated signal and’ is the sampling interval. In such
a formulation, the parametefs and C' are the approxima- Wheres,t € .
tion order and the proportional constant, respectivelgyth Proof: Letx € Hy(f2) be an arbitrary function. Then,
provide a means for comparing the various reconstructioft can be expressed by
(interpolation) methods. Recently, it was suggested to- min
imize the Sobolev norm of the reconstruction error instead x(s) = Z“ . eJns (4)
of its L, norm; this approach was then applied to image " ’
reconstruction from singular points in a Gaussian scale "
space [6]. . . .

pHOW([-Z‘V]eI’, within the context of image processing applicalVere equality holds point-wise. The sampled vak(e)
tions, the interpolation stage yields a discrete-domatinera is a linear bounded functional and by Riesz representation
than a continuous-domain signal and @ig or Sobolev theorem can be expressed by means of an inner product
measures, but al measure, is to be considered instead. calculation

In this work, an/s interpolation method is derived and

introduced for minimizing the maximum possible approxi- x(t) = (x(s), K (s,t)>H2(Q) ) (5)

; 3)
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Fixing the parametet, one can expresK (s,t) by means
of its Fourier coefficient$, yielding

E ap - ejnt
n

J

Q
= b (1 +n-m) / eI (n=ms
-t Q

n,

= 27726%5”(1 + n?).

n

x(t) =

x(s) - K(s,t)ds —|—/Qx’(s) -K'(s,t)ds

(6)

x is arbitrary yieldingb,, =
is,

(2m)~1 . e=" /(1 + n?). That
1 e]’n(‘sft)
Ks)=5:2 T

n

()

Utilizing the Fourier transform relatioer !l = 2/(1+w?)

Theorem 1: Let A = {t,},_, n_, be a sampling grid
and letc be the ideal samples af € HY(Q2) . GivenTt ¢ A,
the solution of

|x(7) = %(7)| (12)

arg min ax
x(7) e 1%l e (o) <L

is given by
%(1) = G, (13)

whereG is given by (10),b,, = K(t,,7) and K is given
by (8). L is an arbitrary constant that complies wit >
c'G e

Proof:
by

Recalling Lemma 1, the valug(r) is given

<x(s), K(S,T)>

In addition, we recall that\ defines a sampling spacg
Therefore, evaluating(7) is equivalent to the approxima-
tion of (14) while havingPsx as the only available data.

x(1) = (14)

HE(Q)

and the aliasing effect occurring in the time domain, one carf his signal representation interpretation for the intéapon

show the equivalence of this last expression with (3)]
Corallary 1: The reproducing kernel @#%(2) is implic-
itly given by

1 ejn(sft)
K(s,t) = — . 8
(5:%) 271';14—712—}—...—1—7121’ ®)

Let A = {tn}, o n_; be a finite set of sampling

points. It then follows that the corresponding sampling
kernels{K(s,t,)},_o n_; CONstitute a Riesz basis for
their span (the values of a Sobolev function at distinct fsoin

are linearly independent)
S = Span {K (s, tn)}) L.

n=0

9)

This sampling space is a subspace ¥ (Q2). The Gram
matrix of these kernels can be shown to comply with

G(m,n) = K(tm,t,) m,n=20,...,N —1. (20)

The orthogonal projection ot onto the sampling space is

given by

N-1
Psx =Y an K(tn), (11)

n=0
wherea = G~ !c and ¢ denotes the ideal samples &f

according toA. The unknown portion ofx that is not
captured by the sampling processhis. x = x — Psx.

I11. INTERPOLATION

problem can be applied now to Theorem 1 of [10]. That is,
the minimax solution of (12) is given by

%(r) = <P3x(s), PsK(S,T)> (15)

HF(Q)
The sampling function$ K (s, t,,)} constitute a Riesz basis
for S and (13) follows accordingly. The constaht upper-
bounding the Sobolev norm &, is required for defining a
robust minimax objective function [11]. O

Theorem 1 describes a minimax approach to interpola-
tion. Given a point to be evaluated, it defines an interpolat-
ing kernel to be applied to the sampled data

k=G b (16)

The support of this kernel may be as large as the size of
the sampled data; that is, every sample value is significant
to the interpolation task. Nevertheless, such kernels hrave
practice a relatively small support (Fig. 1); the reason for
that resides in the structure 6f~! which has its significant
values located near the main diagonal. As can be seen from
Fig. 1, the support oft increases as the Sobolev order
becomes larger. Also, the ensued minimax kernel for the
case ofp = 1 corresponds to the average of only the two
adjacent samples (provided the interpolation point isteda

at the middle). The minimax solution of Theorem 1 is also
element-wise optimal [11], implying that simultaneously
designing several interpolation kernels can be performed
separately, one kernel at a time. Theorem 1 also gives rise
to an interpolating function. Let,, be then-th sampling

Interpolation is the task of evaluating a continuous-demai 4int. Then
function at predefined points while having its sampled ’

version at other points as the only available data. A com-
mon approach to this task relies on kernels that have
attractive properties in terms of approximation order, of

N-—1
bn(t) = Z Gt K(tm,t).

m=0

17)

proportional constant and of minimal support (1). In thisThis interpolating function is applied to the sample value
work, however, a different approach is taken in whictéan  originating from¢,, and it consists of a linear combination
rather than anL, measure is considered. Specifically, theof the sampling kernels, i.ep € S. Every sample point
interpolated values alone are compared with the true valuggas its own interpolating function; i\ is uniform, then
while no continuous-domain approximation is consideredihe ensued interpolation functions resemble each other and
The motivation for such an approach stems from imag¢osses a cyclic shift-invariant structure. Fig. 2 compares
processing applications for which the interpolation stagehe proposed interpolating function with its B-spline ceun
yields a discrete-domain rather than a continuous-domairpart for several Sobolev orders. Following Fig. 2(ap th

signal.
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minimax approach yields an interpolating function that is
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Fig. 1.  Minimax interpolation kernels for Sobolev space®rd{ the - = = minimax
support of the functions i& = (—m, 7), the sampling interval i§" = 0.1 1k B-spline| 1

and the interpolating point is = 0.05. The interpolation kernet is given
by (16) and it is depicted here for Sobolev orderspeE 1,2, 3.

very similar to the hat B-spline function. However, these
two functions are different as can be observed from the
derivative of¢,, depicted therein as well. Furthermore, the
minimax approach yields finite support functions regaslles
of the regularity constraint (i.e., Sobolev order) whichis
contrast to B-spline interpolating functions. An upper bdu
on the approximation error is derived next.

Theorem 2: Let A = {¢,,} andT = {r,,} be a sampling
and an interpolation grid, respectively; and éet RY and
d € RM be the ideal samples of € H5(Q2) over A andT, (b) Sobolev ordep = 2.
respectively. Then,

Fig. 2. Minimax interpolating functions for Sobolev spacetere, the
9 h e S g
A 2 T 1 support of the functions i§2 = (—=,7) and the sampling interval is
Hd - dHe <B- (”XHHg(Q) -c G C) ) (18) T = 0.5. The interpolating function is given by (17). Shown here is a
2 comparison between the proposed interpolating functiahtha B-spline
Wherecz is the minimax approximation fod (Theorem 1) interpolating function. Herep denotes the Sobolev order of the input
G is given by (10) andB is the largest eigenvalue of the signal.

matrix
H(k,1) = L . . .
N_1 and the upper bound for this single interpolation point
= K(m,7)— Z K(tm, 1) - G (m,n) - K(tn,7) follows immediately for the choice of
m,n=0 2
kl=0...M—1. (19) B = |PseK(,7)up 0
Proof: We consider first a single interpolation point — IK(. 2 CIPK (- 2 29
and identify the worst-case input signal possible. Clearly G g o) = IPS K g ) (22)
this signal satisfies This upper bound is tight and is achieved by signals of the
X = Psx + Ps. X, (20) form
where Psx is a known continuous-domain signal and is x=Psx+a- PsK(,7), (23)
given by (11). The approximation error is given by where « is a scalar that determines the Sobolev norm
5 ) , of x. When considering several interpolating points, the
‘d d‘ - ‘<PSLX’PSLK( ) iz o) aproximation error is given by
< Psexll gpio) - 1Ps+ K (7)) gz ) (21) . Mt
wherer is the interpolating point. Now, Hd —d = Z (Psix, Psi K (-, 7))
WPscxlipie = Xl —c G e " me
HEQ) T HE() ~ 2
< B-||[Psix|%5 0 (24)
1K e = K(0.0) 1Ps+xllag o)
|‘pSK(.7T)|‘§{p(Q) = ZK(tm,T)-G_l(m,n)-K(tn,‘r), where B is the upper frame bound of the functions
2 el {Pst K (- Tm)} =0, a1 @nd is determined by the largest
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Fig. 3. An upper bound on the interpolation error, given byeditem Fig. 4. An upper bound on the interpolation error, given byediem
2. Shown here isB for interpolating by a factor of two from a uniform 2. Shown here ig|Psx||> = <TG~ ¢ for the case ofx = (2x)~1/2
sampling grid. As the sampling interval shortens, thisiparbf the upper  and for a uniform sampling grid. As the sampling interval rééws, this
bound tends to lower values. Herg,denotes the Sobolev order of the portion of the upper bound approaches the vaIub;aQFHgm) =1, where

input signal. p denotes the Sobolev order of the input signal.

eigenvalue of their Gram matrix This inner product gives rise to the following reproducing
kernel
H(k,1) (Ps+ K (- 7k), Ps K(-,71)) pp (o ) in(a—z)tim(B—y)
e n(a—x m —
<K('7Tk)7PSLK('le»HP(Q) K(a,ﬂ,x,y) ) 2 2uy (29)
2 4m 2 (v 0<v|<py WPIMAY
(K( ), K(-,11) = PsK (-, 7)) p (f 25) mm SAESVISE

which is not separable in and 5. For example, a Sobolev

It then follows that the worst-case input signal achievingOrder ofp — 2 yields

this upper bound is of the form

1 ejn(ozfz)Jrjm(ﬁfy)

M-1

K(a,B,z,y) = — .

X:PSX+ Z ﬁ'rn'PSiK('aTmL (26) ( ﬂ y) 4F2§nl+n2+m2+n2m2+n4+m4
m=0 o - . (30) .

where 3 is the eigenvector corresponding # that also Next, the minimax approach is compared with the cubic

guarantees the Sobolev norm xf  B-spline approach. A uniform sampling grid is assumed

As the sampling interval shortens, more informationxon @nd an interpolation by a factor of three is examined. Fig.
is available and one may expect the upper bound of Theorefh depicts a cervical Pap smear image. This image was
2 to become smaller. This characteristics is manifested ifownsampled by a factor of three and was then interpolated
both B and ¢’ G~'c. Fig. 3 depictsB as a function of the accordingly. The minimax interpolation approach, shown
sampling interval for a uniform grid and for an interpolatio N Fig. 6, yields SNR=30[dB] while the well known cu-
by a factor of two. Fig. 4 depict§Psx|> = <TG~ lc in bic B-spline method yields only 29.7[dB]. Table | further
a similar manner for the case of = (2r)~/2; as the COMpares the minimax and the cubic B-spline interpolation
sampling interval shortens, this portion of the upper boun&rrordfor_sevgr?l additional mlﬁges. The "&'ﬂ;max hmethod
approaches the value 8|, — 1 was designed for minimizing th&, error and it is shown

The generalization to images is carried out by considerin(‘t:;0 yield better results in terms of SNR.

2D Sobolev functions. Lev = (v1,12) be a tuple of

oV IV. CONCLUSIONS
nonnegative integers whefe| = v, + v, and let

o v An ¢, approach to image reconstruction has been intro-
v — . i (27)  duced. The continuous-domain images are assumed to be-
da  Op long to a reproducing kernel Hilbert space and the sampling

We consider the two-dimensional Sobolev space of ordeProcess is shown to correspond to an appropriate orthogonal
p > 2 defined over a finite open suppdit = (—7,7) x projection. It has been also shown that the values at the
(—m,7) (unlike the 1D case, a 2D Sobolev space of ordefnterpolating grid correspond to a set of inner product
p = 1 is not a reproducing kernel Hilbert space). This spacé&alculations, and that this signal representation ineerpr
consists of function(a, 3) that satisfyD*x € L,(Q) for ~ tation can be utilized to derive a minimax_ solution for
all possibler satisfying|v| < p. The corresponding inner the corresponding, approximation problem. To provide a

product is given by [9] quantitative measure for the efficiency of the new method,
a tight upper bound on the approximation error has been

<x,y>H§(Q) = Z (D"%,D"y) 1,0 (28)  derived and demonstrated. Numerical examples show that

{v: 0<|v|<p} the proposed interpolation method yields better results in

©2007 EURASIP 1792 EUSIPCO, Poznan 2007



TABLE |

A COMPARISON OF INTERPOLATION METHODS BY A FACTOR OF THREE

Image Cubic B-spline  Minimax

SNR (dB)  SNR (dB)

Fig. 5. A cervical Pap smear image.

Brain MRI 17.1 17.3
Sailboat 21.5 21.7
Man 20.4 20.6
Fishing boat 20.3 20.4
House 22.8 22.9
Lena 24.4 24.5

(3]

(4]
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Fig. 6. Interpolation by a factor of three. The proposed aaph, shown [6]
here forp = 3, yields SNR=30[dB] while the cubic B-spline interpolation
method yields only 29.7[dB].

terms of SNR compared to presently available techniques 7
and could be useful in various practical applications. 17]
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